The Sources of Invention

The author is Professor of Economic Organization in the University of Oxford. This article is reprinted by permission from the January 1958 issue of  Lloyds Bank Review.

It seems to be almost universally I assumed that the launching of the space satellites was made pos­sible only by employing vast teams of technicians working together in large research institutions under close central guidance and with un­limited resources and equipment. This may be true, although nobody in the Western world can actually know that it is so. Any suggestion that the difference between failure and success might have resulted from a path breaking discovery by some worker not in a large institu­tion and perhaps not even inter­ested primarily in high-altitude rockets would, nearly everywhere, be instantly dismissed as ludicrous. All this is indicative of the degree to which we are now dominated by the doctrine that technical prog­ress can come only from mass at­tacks upon set problems.

In fact, a glance at the history of the high-altitude rocket hardly supports such a theory. Some of the more important early scientific writings on this subject, published in 1903, were those of a Russian schoolmaster, K. E. Ziolkowsky. He made many fundamental contribu­tions to rocket technology. (Russia was probably further ahead of other countries in thought and work on rockets in 1903 than now). Perhaps the most important scien­tific contribution to rocket theory, however, was made by Hermann Oberth, a teacher of mathematics in Transylvania, who in 1923 pub­lished his classic, By Rocket into Interplanetary Space.

Between the two world wars practical interest was maintained by a group of young German ama­teurs, some of whom were destined to become later outstanding fig­ures in this field. During the war the German military authorities took up the development of the rocket and finally produced the V2, which covered a distance of 120 miles with a deflection of only 2½ miles from the target, reached a speed of 3,000 miles per hour and a height of nearly 60 miles. When Germany was finally over­run, the Peenemünde experts were scattered. Some went to the United States and Britain; more finished up in Russia.

Considering the rapid progress made by Germany in a relatively short period during the war, the development of high-altitude rock­ets since that time seems to have been fairly slow everywhere; for by 1945 there was no doubt that a satellite could be placed in the sky by the use of rockets and there was no great mystery about how, in general, this could be done. The fundamental discoveries in regard to high-altitude rocket propulsion, as distinct from the refinement and development of these ideas, were made by independent enthus­iasts working with limited re­sources under discouraging con­ditions and for long ridiculed or ignored by the main bodies of organized science and technology.

A New Theory of Progress

Even, however, before atomic energy and the sputniks, new no­tions had been gaining ground about how inventions could best be stimulated and how scientists and technologists might be employed to the best effect. (These ideas began to be strongly advocated only during the 1930′s. Before that time, it will be recalled, it was commonly believed that the prob­lem of production was solved and that the distribution of wealth was the important task to be dealt with; that technical progress was perhaps going on too quickly and that scientists and technologists were probably doing more harm than good in the world.)

The new doctrines really amount to a claim that the world has sud­denly become a different kind of place, that the lessons of the past have largely become irrelevant and that we must all now adjust our­selves and our thinking accord­ingly. This "modern" view can be summarized as follows.

In the nineteenth century, most inventions came from the individ­ual inventor who had little or no scientific training and who worked largely with simple equipment and by empirical methods and unsys­tematic hunches. The link between science and technology was slight.

In the twentieth century, the argument runs on, the character­istic features of the nineteenth century are rapidly passing away. The individual inventor is becom­ing rare; men with the power of originating are largely absorbed into research institutions of one kind or another where they must have expensive equipment for their work. Useful invention, in particular, is to an ever-increasing degree issuing from the research laboratories of large firms which alone can afford to operate on an appropriate scale. There is in­creasingly close contact now be­tween science and technology. The consequence is that invention has become more automatic, less the result of intuition or flashes of genius and more a matter of deliberate design. The growing power to invent, combined with the increased resources devoted to it, has produced a spurt of tech­nical progress to which no obvious limit is to be seen.

In this article are set down some of the results of an inquiry, shortly to be published in full,1 designed to test these opinions against the observable facts. It was hoped in this way to make some contribution to a better understanding of the dynamics of industrial societies. The study, it must be repeated, covered a pe­riod before atomic energy and space satellites. It may be that these latest spectacular discover­ies, and the circumstances in which they have arisen, rob ear­lier experience of all pertinence for thinking about the future. I personally have doubts about this but I cannot enlarge upon them here.

Further, the study was con­fined to inventions as contrasted with the development of those in­ventions; it was concerned with the early crucial periods of radical innovation and not the later stages of improvement and exploi­tation of the original discoveries. It is, of course, impossible to draw a sharp dividing line between the two. On the other hand, it would be futile to deny that some new ideas are more revolutionary than others, that certain conceptions start a long chain of consequential improvements and that, unless the flow of these seminal ideas can be maintained, technical progress will finally come to a stop.

Twentieth-Century Inventions

The first task was to pick out a group of twentieth century inven­tions which might be regarded as a fair cross-section of the tech­nical progress of the past fifty years; to make as detailed a study as possible of the conditions under which they had arisen and, in particular, to try to identify the respective parts played by individ­ual inventors, the research ac­tivities of firms of varying size, of universities, and of other institu­tions where research is con­ducted. A list of about sixty inventions was studied, ranging from acrylic fibers to the zip fastener, from air conditioning to xerography.²

The clearest conclusion emerg­ing from the inquiry was that simple generalizations are not pos­sible. The important twentieth century inventions have arisen in all sorts of ways and through the activity of all the different pos­sible agencies. More than one-half of the cases can be ranked as in­dividual invention in the sense that much of the pioneering work was carried through by men who were working on their own behalf without the backing of research in­stitutions and often with limited resources and assistance or, where the inventors were employed in institutions, these institutions were, as in the case of univer­sities, of such a kind that the in­dividuals were autonomous.

The jet engine was invented and carried through the early stages of development almost si­multaneously in Great Britain and Germany by men who were either individual inventors uncon­nected with the aircraft industry or who worked on the airframe side of the industry and were not specialists in engine design; the aircraft engine manufacturers came in only after much pioneer­ing had been carried on. The gyro­compass was invented by a young man who was neither a scientist nor a sailor but had some scien­tific background and was inter­ested in art and exploration.

The process of transforming liquid fats by hardening them for use in soap, margarine, and other foods was discovered by a chemist working in an oil industry, who pursued his researchers and his efforts to get the process adopted, single-handed. The devices which made practicable the hydraulic power steering of motor vehicles Were primarily the work of two men, one of whom worked strictly on his own, while the other was the head of a small engineering company.

The foundations of the radio in­dustry were laid by scientists; but the majority of the basic in­ventions came from individual in­ventors who had no connection with established firms in the com­munications industry or who worked for, or had themselves created, new small firms. In the case of magnetic recording, the early crucial invention came from an independent worker, as did a number of the major inventive improvements; the interest of the companies arose much later. The first successful system for the catalytic cracking of petroleum, which opened up the way for many later advances, was the prod­uct of a well-to-do engineer who was able to sell his ideas for de­velopment to the oil companies.

No Standard Pattern

The history of the evolution of the cotton picker reveals two main lines of progress: in each case, in­dividual inventors working with limited resources were able to take their ideas to the point where large firms were prepared to buy or license their patents for subse­quent development. Bakelite, the first of the thermosetting plastics, was produced by a brilliant sole investigator. The first, and still the most important, commercially practicable method of producing ductile titanium was conceived of by a metallurgist working in his own laboratory.

In the application of automatic transmissions to motor vehicles, the credit for mechanical novelty has to be shared between individ­ual inventors and companies, but the former should probably rank above the latter; actually, the ideas of a shipbuilding engineer lie behind much of the modern progress, but both in Britain and the United States inventors work­ing single-handed have contributed a great deal to the present-day mechanisms. Up to 1938, only one large aircraft manufacturer had taken much interest in the heli­copter and even that only as the result of the personal interest of the head of the firm: the progress was made by the enthusiasm of individual inventors, usually with limited resources, obtaining back­ing in unlikely quarters in a man­ner which would parallel the many stories of "heroic" invention in the nineteenth century.

To mention one or two inven­tions from the field of consumer goods, the groundwork for the successful Kodachrome process was laid by two young collabor­ators, both musicians, whose ideas were taken up by a large photo­graphic firm; the safety razor came from two individuals who struggled through financial and technical doldrums to great success; the zip fastener came from the minds of two engineers and was only taken up for large-scale production many years later; the self-winding wrist watch was in­vented by a British watch re­pairer.

The list next contains several important inventions emerging from firms which were small or of only moderate size. Terylene was discovered by a small research group in the laboratory of a firm which had no direct interest in the production of new fibers. The continuous hot strip rolling of steel sheets was conceived of by an in­ventor who might well be con­sidered an individual inventor and perfected in one of the smal­ler American steel companies. The crease-resisting process emerged from a medium-sized firm in the Lancashire cotton in­dustry. Cellophane tape was the product of what was virtually a one-man effort in a then small American firm. The virtues of DDT were found by a Swiss chemi­cal firm which, for that industry, was of modest dimensions.

Some outstanding successes arose out of the research of very large firms. Nylon was discovered by a small research group, headed by an outstanding chemist, in the laboratories of du Pont. Slightly later another very large firm, I. G. Farbenindustrie, produced and developed a similar fiber, Perlon. Several firms, all large, in Ger­many and the United States have devised methods of producing suc­cessful acrylic fibers. Freon re­frigerants and tetraethyl lead were both produced in General Motors by small groups under Midgley and Kettering; the cases are interesting in that a motor engineering firm made these two important contributions in the chemical field and in that their discovery involved a strong ele­ment of chance.

In the story of television, one outstanding figure was an em­ployee of the Radio Corporation of America, but a number of the crucial inventions were made by a second American inventor who worked independently; and the first complete system for tele­vision broadcasting was created for the British Broadcasting Corporation by a British firm of modest size. The transistor was produced in the Bell Telephone Laboratories, a case which comes nearer than most to research di­rected towards a predetermined result.

Polyethylene was discovered, in the course of some very broad sci­entific studies and as the immedi­ate outcome of a fortunate acci­dent, in the laboratories of Im­perial Chemical Industries and de­veloped by them; but methods of producing polyethylene at low pressures were later discovered at about the same time in one of the Max Planck Institutes in Germany and by American companies. Kril­ium was the discovery of research workers in the Monsanto Chemical Company, the result being at­tained by a combination of chance and a systematic search of a very wide field. In the discovery of the methyl methacrylate polymers, known variously as Perspex, Lu­cite, and Plexiglas, two large firms were primarily involved: I.C.I. and Röhm & Haas; but an independent research student appears to have made an important contribution. The diesel-electric locomotive probably embodied less inventive effort than many of those men­tioned above; it represented the development by European and American firms, and especially by General Motors in the United States, of nineteenth century in­ventions.

The recent remarkable growth in the use of silicones represents the discovery of practical applica­tions for compounds produced by a British university scientist, the usefulness of which was first real­ized by scientists in an American company. The discovery of Neo­prene is a romantic story in which a priest, occupying a chair in chemistry in an American univer­sity, was responsible for observa­tions which were taken up by a large chemical firm and carried much further by them to a suc­cessful conclusion.

Finally, some of the cases quite defied classification: where a re­search worker in an industrial laboratory produced an invention outside his own professional field; where an individual inventor and a company reached much the same results at the same time; where a government research station, an industrial company, scientists in the universities, and individual in­ventors all made important con­tributions to the final result, and so on. Such cases, of course, heighten the impression of a pic­ture which admits of no simple explanation.

The cases taken as a whole re­veal that no one country has a monopoly of inventive power. The outstanding names and groups are widely spread over many indus­trial countries.

The Communists Had None

One significant exception is that, in none of the sixty cases studied, had contributions been made by Russian workers subsequent to the Revolution. Before that date, numerous names of distinguished Russian contributors crop up: the early Russian work in rockets has already been mentioned; in the early efforts linked with television occurs the name of Rosing; Zwory­kin, who later on in the United States was to make one of the vital contributions to the perfection of television, acquired his interests in this field in St. Petersburg before the first world war ; Sikorsky, the great American helicopter pioneer, had in fact built two helicopters in Russia as far back as 1909.

But, after the Revolution, it seems clear that Russia made no important contributions in radar, television, the jet engine, the anti­biotics, the man-made fibers, the newer metals, the catalytic crack­ing of petroleum, the continuous hot strip rolling of steel, silicones or detergents, until others had shown the way and revealed what could be done.

Facts about Earlier Inventions

The twentieth century has, therefore, been much enriched by many inventions attributable to men who have worked under the kind of conditions associated, by long tradition, with the "heroic age" of invention in the nine­teenth century. The next step in the inquiry was to look once again at what happened during the last century. Was this an age when un­educated inventors, ignorant of science, working in isolation in garrets and cellars, blindly and unsystematically tried one thing after another and occasionally stumbled by accident upon some­thing worth-while but were invari­ably robbed of their due rewards by predatory financiers?

Such a picture seems to be a travesty of the facts. The links be­tween science and inventive tech­nology were often close. There were many distinguished scientists who were also important inven­tors: Kelvin, Joule, Davy, Dewar, Hofmann, Bunsen, Babbage, and Playfair. It was frequently true that those inventors who were not formally trained in science showed a high respect for scientific knowl­edge and an anxiety to acquire it. James Watt spent much of his time with the most distinguished scientists of the day ; Charles Par­sons was a university graduate and the son of a President of the Royal Society ; Trevithick, of the high pressure steam engine, consorted with members of the Royal Society; Cartwright was a Fellow of Magdalen College; Henry Maudsley was a close friend of Faraday; Wheatstone and Morse were professors; W. H. Perkin was a student at the Royal College of Chemistry; Edison made use of the Princeton University labora­tories and worked closely with many scientists; C. F. Cross, the inventor of the viscose process, was a consulting chemist. This is to mention only some of the more famous names; the list could be greatly extended of nineteenth century inventors with similar sci­entific contacts and interests.

Many of these men collaborated in ways which, in these days, would be dignified as teamwork. Nor is it the whole truth that in­vention in the nineteenth century was merely empirical and acci­dental whilst that of the twentieth century has become scientific. It is far too large a subject to be argued in full here, but it is at least a tenable view that there has been just as much "accidental" inven­tion and discovery in the present century as in the last.

The evidence, therefore, sug­gests that much of the history of invention written up to the present day, by somewhat distorting the picture of what occurred in the nineteenth century and by then dis­torting it in the opposite sense for the twentieth century, has exag­gerated the fundamental differ­ences between the two periods and has understressed the continuity which runs through the whole story. Perhaps the world, in the matter of technical progress, is not such a new place as it is sometimes made out to be.

In Matters of Policy

It was not the purpose of the in­quiry to concern itself with policy; for what is needed, first and fore­most, for a better understanding of the forces which influence the flow of innovations is more evi­dence in a field of study up to now sadly neglected. But the findings have some bearing upon major questions to which industrial so­cieties ought properly to be ad­dressing themselves.

We are in these days caught up in a great boom in industrial re­search and development which, in its present intensity, may be tran­sient and in some ways artificial. It has been greatly stimulated by defense needs in the past year or two. It has been fostered by what are probably over-sanguine views about the value of science and tech­nology in increasing the profits of individual firms or in raising general standards of living. But even when full allowance has been made for all this, there still remains a strong and newly-found belief that, by taking thought, it ought to be possible to increase the flow of new and useful technical and scientific ideas and to make fuller and more rapid use of them for material im­provement.

The policies which, in conse­quence, are being pressed have al­ready been referred to. The maxi­mum number of people should be given a basic training in technical matters; the different specialists must be encouraged or forced to share their knowledge and ideas in cooperative teams; scientists and technologists should be employed in large research institutions where, secure from the vicissitudes of the life of the independent in­ventor and provided with ample equipment, guidance can be given to the main lines of their interests.

That, in fact, is what is happen­ing in varying degrees everywhere. In Russia, we are informed, the whole body of scientists and tech­nologists pursue their labors with­in a framework of purposes laid down by the central authority, be­nign but all-seeing. But, even in the Western world, the institution­alization of research and invention is going on apace. A steadily in­creasing proportion of those with scientific and technical training are now employed under conditions in which they are not free to fol­low their own bents and hunches; they are tied men. In some coun­tries, even the autonomy of the universities is being threatened by their heavy dependence upon ad hoc grants for specified tasks.

Inventors Are a Race Apart

Are these conditions most favor­able to the flow of really new ideas? Or are they the conditions which, while perhaps increasing the number of minor improve­ments, will finally stifle original­ity? As John Stuart Mill once put it, the question is "whether our march of intellect be not rather a march towards doing without intel­lect, and supplying our deficiency of giants by the united efforts of a constantly increasing multitude of dwarfs." In trying to strike a bal­ance here it is worth-while looking at the side of the shield which in these days is so frequently ignored.

First, men with great powers of originality are in many ways a race apart. Like any other group, of course, they differ between themselves, but on the whole they are constitutionally more averse to cooperation than the rest of us. "I am a horse for single harness," wrote Einstein, "and not cut out for landau or teamwork." This follows because their great gifts arise from the habit of calling everything, even the simplest as­sumptions, into question; because they are in the grip of inner compulsions which lead them to as­sume the right of deciding how their special powers should be em­ployed and how best a task should be approached, to resent interfer­ence, and to be thrown out of bal­ance by it. Many of them are, by temperament, wholly unsuitable for work in any research institu­tion which is formally organized. And, beyond that, it is even con­ceivable that, in many cases, their native powers of innovation might be weakened or destroyed by over-prolonged scientific or technical ed­ucation.

Second, it seems to be possible to exaggerate the virtues of team­work. Of course, as knowledge grows and forces more specializa­tion upon scientists and technolo­gists, systems of communication between the specialists must be progressively strengthened. And it is true that in some directions in recent years small teams are tend­ing to replace the individual work­er, although this is often because the man of original powers is given more assistance for his routine tasks.

It is, however, a far cry from the useful, voluntary collaboration of a few like-minded people to the popular conception of serried ranks of Ph.D’s moving forward into the scientific unknown as an army guided by some common purpose. The working groups even in a large industrial research laboratory are normally small. The real moving spirits are few and the rest pedes­trian, although of course useful, supporters. Quantity cannot make up for quality.

The reasons for the limitation of teamwork are obvious. Teamwork is always a second best. There is no kind of organized, or even volun­tary, coordination which approaches in effectiveness the syn­thesizing which goes on in one hu­man mind. Because of the growing specialization, teamwork undoubt­edly is inescapable. But it carries with it a countervailing loss of power inevitable when several minds are groping towards mutual understanding. And the loss be­comes the greater the larger the team and the less voluntary it is in character.

Nor must it be overlooked that the members of a team must al­ways go the same way; that the strength of a team may be deter­mined by its weakest link; that friction even in small groups of men with original powers of mind is not uncommon; that all coopera­tion consumes time; and that a large team is essentially a commit­tee and thereby suffers from the habit, common to all committees but especially harmful where re­search is concerned, of brushing aside hunches and intuitions in favor of ideas that can be more systematically articulated.

Third, it is erroneous to suppose that those techniques of large-scale operation and administration which have produced such remark­able results in some branches of industrial manufacture can be ap­plied with equal success to efforts to foster new ideas. The two kinds of organization are subject to quite different laws. In the one case the aim is to achieve smooth, routine, and faultless repetition, in the other to break through the bonds of routine and of accepted ideas. So that large research organizations can perhaps more easily become self-stultifying than any other type of large organization, since in a measure they are trying to or­ganize what is least organizable. The director of a large research institution is confronted with what is perhaps the most subtle task to be found in the whole field of ad­ministration; a task which calls for a rare combination of quali­ties, scientific ability commanding the respect of colleagues, and also an aptitude for organizing a group.

There are many cases to support the conclusion that a large re­search organization may itself prove to be an obstacle to change. Ideas emanating from outside may be belittled or passed over. "Is not every new discovery a slur upon the sagacity of those who over­looked it?" And it will always be seductive for an established organization to take the smaller risks and more prudent routes when the rare and larger prizes are likely to be found in other di­rections.

Can the Pace Be Forced?

Here, then, is the dilemma which confronts any community trying to make the best of the native sci­entific and technical originality of its members. On the one side are the views of those, at the mo­ment it seems in the majority, who conceive of the possibility of forcing the pace, as it was recently put by one research director:

We find the self-directed individ­ual being largely replaced by highly organized team attack in which we employ many people who, if left en­tirely to their own devices, might not really be research-minded. In other words, we hire people to be curious as a group… we are undertaking to create research capability by the sheer pressure of money…

On the other hand are the fears of those, at present much in the minority, who suspect that such forcing tactics will mean that we may frustrate the awkward, lonely, inquiring, critical individuals who, to judge by past experience, have so much to give but can so easily be impeded. To pose the question in concrete form: the last time that a new form of propulsion, the jet engine, came to be conceived it was pressed forward by individual workers who had to meet frustra­tions and indifference, even resist­ance, on the part of established institutions. We are, presumably, not at the end of such innovations; there may be other new forms of motive power to come.

And if, on some future occasion, the initiative comes in much the same way, do we resign ourselves to the idea that it must once again run the gauntlet of resistances from established interests? Are we further prepared to resign ourselves to the thought that, as re­search becomes more highly or­ganized and the subject of institutional effort, any outside inven­tor will in the future have even less chance than in the past to force his ideas upon reluctant au­thority?

It may be that there are no clear-cut answers to such weighty questions. But the study of the in­ventions of the twentieth century would seem to support the follow­ing generalizations. Knowledge about innovation is so slender that it is almost an impertinence to speculate concerning the conditions and institutions which may foster or destroy it. But, in seeking to provide a social framework con­ducive to innovation, there would seem to be great virtues in eclecti­cism. If past experience is any­thing to judge by, crucial discov­eries may spring up at practically any point and at any time.

As contrasted with the ideal ways of organizing effort in other fields, what is needed for maximiz­ing the flow of ideas is plenty of overlapping, healthy duplication of efforts, lots of the so-called wastes of competition, and all the vigor­ous untidiness so foreign to the planners who like to be sure of the future.   

Footnotes

1Jewkes, J., Sawers, D., and Stillerman, R. The Sources of Invention. London: Macmillan, Jan. 1958. Available in the U.S. through St. Martin‘s Press, Inc., 103 Park Ave., New York 17, N. Y.

2Acrylic Fibres, Air Conditioning, Auto­matic Transmissions, Bakelite, Ball-point Pen, Catalytic Cracking of Petroleum, Cellophane, Cellophane Tape, Chromium Plating, Cinerama, Continuous Casting of Steel, Continuous Hot Strip Rolling, Cotton Picker, Crease-Resisting Fabrics, Cyclotron, DDT, Diesel-Electric Railway Traction, Domestic Gas Refrigeration, Duco Lacquers, Electric Precipitation, Electron Microscope, Fluorescent Light­ing, Freon Refrigerants, Gyro-Compass, Hardening of Liquid Fats, Helicopter, Insulin, Jet Engine, Kodachrome, Krilium, Long-Playing Record, Magnetic Re­cording, Methyl Methacrylate Polymers, Modern Artificial Lighting, Neoprene, Nylon and Perlon, Penicillin, ‘Polaroid’ Land Camera, Polyethylene, Power Steering, Quick Freezing, Radar, Radio, Rockets, Safety Razor, Self-winding Wrist Watch, Shell Molding, Silicones, Stainless Steels, Streptomycin, Sulzer Loom, Synthetic Detergents, Synthetic Light Polariser, Television, `Terylene’ Polyester Fibre, Tetraethyl Lead, Tita­nium, Transistor, Tungsten Carbide, Xerography, Zip Fastener.

 

***

 

Ideas On Liberty
Knowledge of Good and Evil

It could be argued that what we need, in the present state of the world, is not just more and more scientists and technolo­gists, but more people whose understanding has been broadened, whose minds have been illumined and sympathies deepened through education in the humanities and the liberal arts…. Perhaps the quality most in short supply is not technical compe­tence but human understanding, not intelligence but wisdom.

A great British scholar, Sir Richard Livingstone, said in 1941: "We cannot have too much science, technology, economics, but they lose their usefulness unless we see clearly the ends for which we intend to use them, and unless those ends are worthy of man. They deal with means and not with ends, and the more we have of them the more we need to strengthen, in both educa­tion and life, those studies whose subject is ‘the knowledge of good and evil.’ "

From the Review of The Institute of Public Af­fairs, Victoria, Australia, October-December, 1957.